

Bench-Top 60-90GHz Up-Converter

60-90GHz Up-Converter, X4 on LO line Bench-top Test Equipment, WR-12

2023-5-5

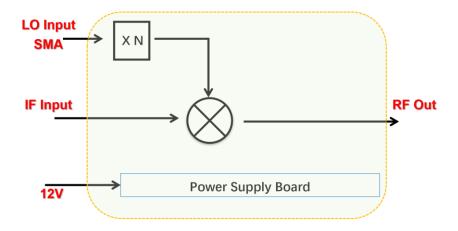
Product Overview

AT-BTUC4-6090 is 60-90GHz Up-converter with X4 frequency multiplier inside. The Up converter IF-RF conversion loss is -12dB.

The RF Port is with standard WR-12. LO input port and IF input port are 2.92mm Female. Please note there will be both up and low band for the mixer. AT Microwave provides man kinds of filters if only one side is needed.

PDRO, Band Pass filter and Power amplifier can be integrated internally or externally according to request.

More information, please contact sales@atmicrowave.com


Advantages

- ✓ Frequency: 60-90GHz
- ✓ Low Loss: -12dB
- ✓ IF: DC-35GHz
- ✓ LO X4 inside
- ✓ Bench-Top Labs Test

Application

- √ 5G Communication
- ✓ ROF (RF Over Fiber)
- ✓ Radar System
- ✓ RCS Test

Diagram Block:

Bench-Top 60-90GHz Up-Converter

Key Features

Parameter	Min	Typical	Max
RF Frequency	60GHz		90GHz
4XLO Frequency Range	60GHz		90GHz
LO Frequency	15GHz		22.5GHz
LO Multiplier Factor		X4	
LO Driver	+3dBm	+5dBm	+8dBm
Mixer Type		Fundamental Mixer	
IF Frequency		DC-30GHz	
IF-RF Gain(IF=100MHz)		-12dB	-15dB
IF Port Input P1dB		+0dBm	
RF Port Return Loss		-10dB	
IF Port Return Loss		-10dB	
Power Supply (with AC/DC Adapter)	+90V	+220V	+260V
Spec Temp		25C	

Bench-Top 60-90GHz Up-Converter

Mechanical Information:

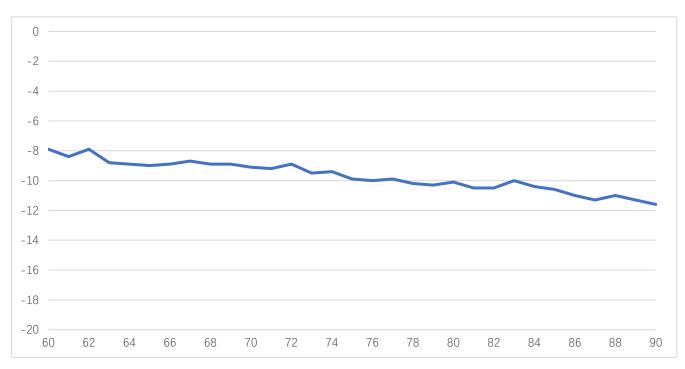
Parameter	Value	
RF Port	WR-12	
LO	SMA Female	
IF Port	2.92mm Female	
DC Bias	+12V Supply, AC to DC Power Converter included	
DC Bias Switch	ON-OFF switch with light indicator	
Dimension	See outline	

Absolute Maximum Ratings Table

Parameter	Value
AC Supply	+260V
IF Input Power	+10dBm
RF Input Power	+10dBm
LO Port Power	+15dBm
Operating Temperature	0 to 50 C
Storage Temperature	-45 to +85C

Notes:

- 1. Datasheet may be changed according to update of MMIC, Raw materials, process, and so on.
- 2. This data is only for reference, not for guaranteed specifications.
- 3. Please contact AT Microwave team to make sure you have the most current data.



Bench-Top 60-90GHz Up-Converter

Test Data(25c)

Conversion Loss vs Frequency, IF=100MHz

Bench-Top 60-90GHz Up-Converter

Application Note

Mixer is a three ports component with RF, LO and IF ports. Normally, a mixer can be used both up and down converter application. Take up converter for example:

General Balance Mixer

For general balance mixer, RF=LO +/- IF. There will be both high end LO+IF and Low End LO-IF. Take for example, IF=2GHz, LO=60GHz, so there will be 38GHz and 42GHz at RF port with same power level.

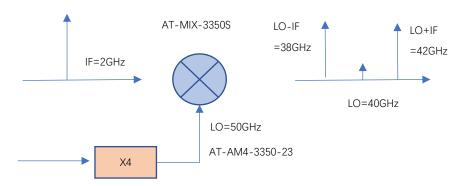


Figure A: General Balance Mixer with Both High and Low Side Output

IQ Mixer used as side suppression Mixer

When IF=2GHz, 90 degree hybrid is used at IF port, when IF applies to Input 1 Port of hybrid, you will have high end frequency RF=LO+IF=42GHz, while have side suppression (say -25dBc) at Low end frequency 38GHz. When you need low end frequency 38GHz, and make side suppression for high end frequency 42GHz, just applies IF to Input 2 of the hybrid.

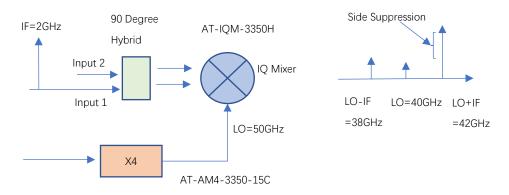
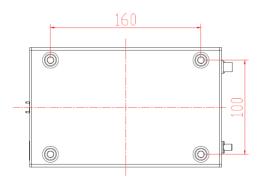
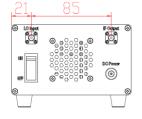
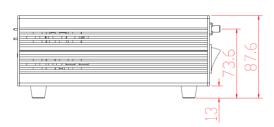
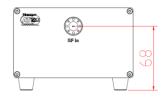


Figure B: IQ Mixer works as side suppression mixer








Bench-Top 60-90GHz Up-Converter

Dimension: (mm)

